Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.341
Filtrar
1.
Int J Biol Macromol ; 262(Pt 2): 130181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360240

RESUMO

Poly(butylene diglycolate-co-furandicarboxylate) (PBDF) is a newly developed biodegradable copolyester. Candida antarctica lipase B (CALB) has been identified as an effective catalyst for PBDF degradation. The mechanism is elucidated using a combination of molecular dynamics simulations and quantum chemistry approaches. The findings unveil a four-step catalytic reaction pathway. Furthermore, bond analysis, charge and interaction analysis are conducted to gain a more comprehensive understanding of the PBDF degradation process. Additionally, through the introduction of single-point mutations to crucial residues in CALB's active sites, two mutants, T138I and D134I, are discovered to exhibit improved catalytic efficiency. These significant findings contribute to the advancement of our comprehension concerning the molecular mechanism of underlying copolyesters degradation, while also presenting a novel approach for expediting the degradation rate by the CALB enzyme modification.


Assuntos
Proteínas Fúngicas , Lipase , Lipase/química , Proteínas Fúngicas/química , Simulação de Dinâmica Molecular , Domínio Catalítico
2.
Colloids Surf B Biointerfaces ; 235: 113764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301428

RESUMO

Development of immobilized lipase with excellent catalytic performance and low cost is the major challenge for large-scale industrial applications. In this study, green renewable microcrystalline cellulose (MCC) that was hydrophobically modified with D-alanine (Ala) or L-lysine (Lys) was used for immobilizing Candida antarctica lipase B (CALB). The improved catalytic properties were investigated by experimental and computational methods. CALB immobilized on MCC-Ala with higher hydrophobicity showed better catalytic activity than CALB@MCC-Lys because the increased flexibility of the lid region of CALB@MCC-Ala favored the formation of open conformation. Additionally, the low root mean square deviation and the high ß-sheet and α-helix contents of CALB@MCC-Ala indicated that the structure became more stable, leading to a significantly enhanced stability (54.80% and 90.90% relative activity at 70 °C and pH 9.0, respectively) and good reusability (48.92% activity after 5 cycles). This study provides a promising avenue to develop immobilized lipase with high catalytic properties for industry applications.


Assuntos
Aminoácidos , Celulose , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Candida/metabolismo , Lipase/química , Proteínas Fúngicas/química , Alanina , Lisina
3.
Dalton Trans ; 53(6): 2848-2858, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38231010

RESUMO

Aspergillus fumigatus is an opportunistic pathogen that is able to invade and grow in the lungs of immunosuppressed patients and cause invasive pulmonary aspergillosis. The concentration of free Zn(II) in living tissues is much lower than that required for optimal fungal growth; thus, to obtain Zn(II) from the host, Aspergillus fumigatus uses highly specified Zn(II) transporters: ZrfA, ZrfB and ZrfC. The ZrfC transporter plays the main role in Zn(II) acquisition from the host in neutral and mildly alkaline environment via interacting with the secreted Aspf2 zincophore. Understanding the Aspf2-ZrfC interactions is therefore necessary for explaining the process of Zn(II) acquisition by Aspergillus fumigatus, and identifying Zn(II) binding sites in its transporter and describing the thermodynamics of such binding are the fundamental steps to achieve this goal. We focus on two probable ZrfC Zn(II) binding sites and show that the Ac-MNCHFHAGVEHCIGAGESESGSSQ-NH2 region binds Zn(II) with higher affinity than the Ac-TGCHSHGS-NH2 one and that this binding is much stronger than the binding of Zn(II) to the Aspf2 zincophore, allowing efficient Zn(II) transport from the Aspf2 zincophore to the ZrfC transporter. The same ZrfC fragments also able to bind Ni(II), another metal ion essential for fungi that could also compete with Zn(II) binding, with comparable affinity.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Humanos , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/química , Proteínas de Membrana Transportadoras , Sítios de Ligação , Zinco/metabolismo
4.
J Oleo Sci ; 73(1): 55-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171731

RESUMO

Highly pure 2,3-dioleoyl-1-O-alkyl glyceryl ether (DOGE), whose 1-position is a lipase-tolerant ether bond, was chemically synthesized and its detailed regioselectivity and acyl transfer were confirmed. During ethanolysis using immobilized Candida antarctica lipase B (CAL-B) with DOGE as the substrate, monooleoyl-1-O-alkyl glyceryl ethers (MOGEs) and a few 1-alkyl glyceryl ethers were formed upon consumption of the substrate. The structure of MOGE was confirmed using nuclear magnetic resonance spectroscopy and only the isomer of 2-MOGE was formed, indicating that CAL-B has complete α- regiospecificity. During ethanolysis, 3-MOGE was formed via acyl migration. These results indicate that the formation of 1-alkyl glyceryl ethers is not due to the imperfect regiospecificity of CAL-B, but rather due to ethanolysis of the formed 3-MOGE. The ethanolysis rate at the 3-α-position of DOGE was faster and the rate of acyl transfer was slightly slower for chain lengths greater than 14. These results show for the first time that both deacylation at the 3-position and acyl migration from the 2- to 3-position are affected by the structure of 1-position.


Assuntos
Etanol , Éteres de Glicerila , Etanol/química , Lipase/química , Proteínas Fúngicas/química , Enzimas Imobilizadas/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123817, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211445

RESUMO

Advances in precision medical diagnostics require accurate and sensitive characterization of pathogens. In particular, health conditions associated with protein misfolding require an identification of proteinaceous amyloid fibrils or their precursors. These pathogenic entities express specific molecular structures, which require ultra-sensitive, molecular-level detection methods. A potentially transformative technique termed nanoplasmonics employs electro-optical phenomena in the vicinity of specially engineered metal nanostructures. A signature application of nanoplasmonics exploits enhancement of inelastic scattering of light in specific locations near metallic nanostructures, known as surface-enhanced Raman scattering (SERS). We applied SERS complemented with confocal microscopy imaging for ultra-sensitive, non-invasive, and label-free characterization of the fungal prion HET-s (218-289) as a model for ß-sheet rich amyloid structures. This characterization employed Au-coated dielectric supports as plasmonic substrates. After confirming the formation of HET-s fibrils at both pH 7.5 and 2.8 using negative staining transmission electron microscopy, we subjected the fibril-containing solutions to multimodal analysis using confocal microscopy and SERS. The SERS spectral fingerprints from all HET-s samples expressed vibrational markers for ß-structure, unstructured backbone, and aromatic side-chains. However, relative intensities of major SERS bands were pronouncedly different for the two pH levels. We have analyzed potential origins of the most pronounced SERS bands and proposed hypothetical mechanistic models that could explain the observed SERS fingerprints from HET-s fibrils grown at pH 7.5 and 2.8.


Assuntos
Príons , Príons/química , Amiloide/química , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/química
6.
J Mol Biol ; 436(4): 168443, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211892

RESUMO

Yeast plasma-membrane Na+/H+ antiporters (Nha/Sod) ensure the optimal intracellular level of alkali-metal cations and protons in cells. They are predicted to consist of 13 transmembrane segments (TMSs) and a large hydrophilic C-terminal cytoplasmic part with seven conserved domains. The substrate specificity, specifically the ability to recognize and transport K+ cations in addition to Na+ and Li+, differs among homologs. In this work, we reveal that the composition of the C-terminus impacts the ability of antiporters to transport particular cations. In the osmotolerant yeast Zygosaccharomyces rouxii, the Sod2-22 antiporter only efficiently exports Na+ and Li+, but not K+. The introduction of a negative charge or removal of a positive charge in one of the C-terminal conserved regions (C3) enabled ZrSod2-22 to transport K+. The same mutations rescued the low level of activity and purely Li+ specificity of ZrSod2-22 with the A179T mutation in TMS6, suggesting a possible interaction between this TMS and the C-terminus. The truncation or replacement of the C-terminal part of ZrSod2-22 with the C-terminus of a K+-transporting Nha/Sod antiporter (Saccharomyces cerevisiae Nha1 or Z. rouxii Nha1) also resulted in an antiporter with the capacity to export K+. In addition, in ScNha1, the replacement of three positively charged arginine residues 539-541 in the C3 region with alanine caused its inability to provide cells with tolerance to Li+. All our results demonstrate that the physiological functions of yeast Nha/Sod antiporters, either in salt tolerance or in K+ homeostasis, depend on the composition of their C-terminal parts.


Assuntos
Proteínas Fúngicas , Potássio , Trocadores de Sódio-Hidrogênio , Zygosaccharomyces , Lítio/metabolismo , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/química , Zygosaccharomyces/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Potássio/metabolismo
7.
J Hazard Mater ; 465: 133153, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056268

RESUMO

Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.


Assuntos
Cromo , Solo , Solo/química , Cromo/análise , Ferro , Proteínas Fúngicas/química , Glicoproteínas/química , Carbono , Adsorção
8.
Arch Biochem Biophys ; 751: 109836, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000493

RESUMO

Fungal ribotoxins are extracellular RNases that inactivate ribosomes by cleaving a single phosphodiester bond at the universally conserved sarcin-ricin loop of the large rRNA. However, to reach the ribosomes, they need to cross the plasma membrane. It is there where these toxins show their cellular specificity, being especially active against tumoral or virus-infected cells. Previous studies have shown that fungal ribotoxins interact with negatively charged membranes, typically containing phosphatidylserine or phosphatidylglycerol. This ability is rooted on their long, non-structured, positively charged loops, and its N-terminal ß-hairpin. However, its effect on complex lipid mixtures, including sphingophospholipids or cholesterol, remains poorly studied. Here, wild-type α-sarcin was used to evaluate its interaction with a variety of membranes not assayed before, which resemble much more closely mammalian cell membranes. The results confirm that α-sarcin is particularly sensitive to charge density on the vesicle surface. Its ability to induce vesicle aggregation is strongly influenced by both the lipid headgroup and the degree of saturation of the fatty acid chains. Acyl chain length is indeed particularly important for lipid mixing. Finally, cholesterol plays an important role in diluting the concentration of available negative charges and modulates the ability of α-sarcin to cross the membrane.


Assuntos
Endorribonucleases , Proteínas Fúngicas , Colesterol , Endorribonucleases/química , Proteínas Fúngicas/química , Lipídeos
9.
PLoS One ; 18(12): e0295397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055755

RESUMO

Here we employed sequence-based and structure-based screening for prospecting lipases that have structural homolog to Candida antarctica lipase B (CalB). CalB, a widely used biocatalyst, was used as structural template reference because of its enzymatic properties. Structural homolog could aid in the discovery of novel wild-type enzymes with desirable features and serve as a scaffold for further biocatalyst design. The available metagenomic data isolated from various environments was leveraged as a source for bioprospecting. We identified two bacteria lipases that showed high structural similarity to CalB with <40% sequence identity. Partial purification was conducted. In comparison to CalB, the enzymatic characteristics of two potential lipases were examined. A candidate exhibited optimal pH of 8 and temperature of 50°C similar to CalB. The second lipase candidate demonstrated an optimal pH of 8 and a higher optimal temperature of 55°C. Notably, this candidate sustained considerable activity at extreme conditions, maintaining high activity at 70°C or pH 9, contrasting with the diminished activity of CalB under similar conditions. Further comprehensive experimentation is warranted to uncover and exploit these novel enzymatic properties for practical biotechnological purposes.


Assuntos
Enzimas Imobilizadas , Lipase , Enzimas Imobilizadas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Lipase/genética , Lipase/química , Temperatura , Metagenômica
10.
Cell Rep ; 42(12): 113567, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38118441

RESUMO

Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.


Assuntos
Proteínas Fúngicas , Membranas Intracelulares , Fosfolipases , Chaetomium/enzimologia , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfolipases/química , Fosfolipases/genética , Fosfolipases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Domínios Proteicos , Simulação de Dinâmica Molecular , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Ativação Enzimática
11.
Arch Biochem Biophys ; 750: 109807, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37923242

RESUMO

Lipases are versatile catalysts widely used in industrial biotransformations and laboratory-scale developed reactions with industrial potential. Despite the fact that lipase B from Candida antarctica (CALB) is one of the most widely used lipolytic enzymes, its substrate specificity is still poorly understood. One observed trend is that reactions carried out with carboxylic acids containing a double bond are less efficient on average. Here, we have utilized a combination of in vitro and in silico techniques, to better understand the negative impact of a double bond on CALB-mediated esterification. Then through extensive molecular dynamics (MD) simulations, we were able to map the entry pathway of cinnamic acid and its derivative into the CALB active site, and their interactions with catalytic residues. We observed a 2 step binding mechanism of studied compounds, where they first penetrate the enzyme pocket in a conformation where their carboxylic groups are extended towards the solvent. This is followed by further penetration of the acid into the enzymatic active pocket, and a full rotation within the active site, which orients the acid in a conformation that allows further steps of the esterification reaction. As acids containing a double bond are more rigid, their mobility and thus ability to rotate in the narrow CALB active site is hampered, which provides a structural explanation for the decreased efficiency of such acids. Our data provide insight into the substrate specificity of CALB-mediated esterification, providing important structural guidelines to better understand and potentially improve the efficiency of such reactions.


Assuntos
Enzimas Imobilizadas , Simulação de Dinâmica Molecular , Esterificação , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Catálise , Proteínas Fúngicas/química
12.
Carbohydr Polym ; 322: 121337, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839844

RESUMO

Efficient and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Here, we constructed molecular enrichment accelerators to synergistically enhance enzyme activity and stability by assembling enzyme surface grafted polymer and cyclodextrin. At 40 °C, the enzyme activity of CalB-PNIPAM212/ß-CD was 2.9 times that of CalB-PNIPAM212. The enzyme activity of CalB-PNIPAM428/γ-CD had reached 1.61 times that of CalB. At the same time, the stability of CalB-PNIPAM212/ß-CD and CalB-PNIPAM428/γ-CD are slightly better than that of CalB under high temperature, organic solution and extreme pH conditions. The synergistic increase in activity and stability of the lipase-polymer assembly was achieved due to the structure of assembly, in which the role of cyclodextrin could enrich substrate affecting molecular diffusion. In addition, the lipase-polymer assembly proved to be an efficient catalyst for biodiesel synthesis, with a biodiesel conversion 1.4 times that of CalB at 60 °C. Therefore, this simple and low-cost lipase-polymer assembly provides new possibilities for the construction of high-efficiency industrial biocatalytic catalysts.


Assuntos
Ciclodextrinas , Proteínas Fúngicas , Proteínas Fúngicas/química , Biocombustíveis , Ésteres , Polímeros , Catálise , Lipase/química , Enzimas Imobilizadas/química
13.
Science ; 381(6665): 1461-1467, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769084

RESUMO

Candida auris is an emerging fungal pathogen responsible for health care-associated outbreaks that arise from persistent surface and skin colonization. We characterized the arsenal of adhesins used by C. auris and discovered an uncharacterized adhesin, Surface Colonization Factor (Scf1), and a conserved adhesin, Iff4109, that are essential for the colonization of inert surfaces and mammalian hosts. SCF1 is apparently specific to C. auris, and its expression mediates adhesion to inert and biological surfaces across isolates from all five clades. Unlike canonical fungal adhesins, which function through hydrophobic interactions, Scf1 relies on exposed cationic residues for surface association. SCF1 is required for C. auris biofilm formation, skin colonization, virulence in systemic infection, and colonization of inserted medical devices.


Assuntos
Candida auris , Candidíase Invasiva , Proteínas Fúngicas , Proteínas dos Microfilamentos , Animais , Humanos , Candida auris/genética , Candida auris/patogenicidade , Virulência , Candidíase Invasiva/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Domínios Proteicos , Interações Hidrofóbicas e Hidrofílicas , Camundongos
14.
Chembiochem ; 24(22): e202300431, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37768852

RESUMO

The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway - its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.


Assuntos
Desidrogenases de Carboidrato , Elétrons , Aminoácidos/metabolismo , Proteínas Fúngicas/química , Transporte de Elétrons , Desidrogenases de Carboidrato/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Citocromos/metabolismo
15.
J Biol Chem ; 299(11): 105262, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734553

RESUMO

A considerable number of lytic polysaccharide monooxygenases (LPMOs) and other carbohydrate-active enzymes are modular, with catalytic domains being tethered to additional domains, such as carbohydrate-binding modules, by flexible linkers. While such linkers may affect the structure, function, and stability of the enzyme, their roles remain largely enigmatic, as do the reasons for natural variation in length and sequence. Here, we have explored linker functionality using the two-domain cellulose-active ScLPMO10C from Streptomyces coelicolor as a model system. In addition to investigating the WT enzyme, we engineered three linker variants to address the impact of both length and sequence and characterized these using small-angle X-ray scattering, NMR, molecular dynamics simulations, and functional assays. The resulting data revealed that, in the case of ScLPMO10C, linker length is the main determinant of linker conformation and enzyme performance. Both the WT and a serine-rich variant, which have the same linker length, demonstrated better performance compared with those with either a shorter linker or a longer linker. A highlight of our findings was the substantial thermostability observed in the serine-rich variant. Importantly, the linker affects thermal unfolding behavior and enzyme stability. In particular, unfolding studies show that the two domains unfold independently when mixed, whereas the full-length enzyme shows one cooperative unfolding transition, meaning that the impact of linkers in biomass-processing enzymes is more complex than mere structural tethering.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Modelos Moleculares , Dobramento de Proteína , Domínio Catalítico , Celulose/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Serina , Estabilidade Proteica , Ativação Enzimática , Simulação de Acoplamento Molecular , Streptomyces/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estrutura Terciária de Proteína
16.
Biomacromolecules ; 24(11): 4783-4797, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37747808

RESUMO

Hydrophobins are remarkable proteins due to their ability to self-assemble into amphipathic coatings that reverse surface wettability. Here, the versatility of the Class I hydrophobins EASΔ15 and DewY in diverse nanosuspension and coating applications is demonstrated. The hydrophobins are shown to coat or emulsify a range of substrates including oil, hydrophobic drugs, and nanodiamonds and alter their solution and surface behavior. Surprisingly, while the coatings confer new properties, only a subset is found to be resistant to hot detergent treatment, a feature previously thought to be characteristic of the functional amyloid form of Class I hydrophobins. These results demonstrate that substrate surface properties can influence the molecular structures and physiochemical properties of hydrophobin and possibly other functional amyloids. Functional amyloid assembly with different substrates and conditions may be analogous to the propagation of different polymorphs of disease-associated amyloid fibrils with distinct structures, stability, and clinical phenotypes. Given that amyloid formation is not required for Class I hydrophobins to serve diverse applications, our findings open up new opportunities for their use in applications requiring a range of chemical and physical properties. In hydrophobin nanotechnological applications where high stability of assemblies is required, simultaneous structural and functional characterization should be carried out. Finally, while results in this study pertain to synthetic substrates, they raise the possibility that at least some members of the pseudo-Class I and Class III hydrophobins, reported to form assemblies with noncanonical properties, may be Class I hydrophobins adopting alternative structures in response to environmental cues.


Assuntos
Amiloide , Proteínas Fúngicas , Proteínas Fúngicas/química , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Sequência de Aminoácidos , Amiloide/química , Proteínas Amiloidogênicas
17.
Angew Chem Int Ed Engl ; 62(37): e202306059, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541667

RESUMO

The high-resolution X-ray crystal structure of the ternary complex FtmOx1 ⋅ 2OG ⋅ fumitremorgin B and the catalytic mechanism were recently reported by us (DOI 10.1002/anie.202112063). In their Correspondence, Zhang, Costello, Liu et al. criticize our work in several aspects. Herein, we address these questions one by one. These structural clarifications and new computational results further support the CarC-like mechanistic model.


Assuntos
Dioxigenases , Proteínas Fúngicas , Proteínas Fúngicas/química , Dioxigenases/química , Catálise
18.
Int J Biol Macromol ; 248: 125853, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460068

RESUMO

Lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl agarose at low loading and at a loading exceeding the maximum support capacity. Then, the enzymes have been treated with glutaraldehyde and inactivated at pH 7.0 in Tris-HCl, sodium phosphate and HEPES, giving different stabilities. Stabilization (depending on the buffer) of the highly loaded biocatalysts was found, very likely as a consequence of the detected intermolecular crosslinkings. This did not occur for the lowly loaded biocatalysts. Next, the enzymes were chemically aminated and then treated with glutaraldehyde. In the case of TLL, the intramolecular crosslinkings (visible by the apparent reduction of the protein size) increased enzyme stability of the lowly loaded biocatalysts, an effect that was further increased for the highly loaded biocatalysts due to intermolecular crosslinkings. Using CALB, the intramolecular crosslinkings were less intense, and the stabilization was lower, even though the intermolecular crosslinkings were quite intense for the highly loaded biocatalyst. The stabilization detected depended on the inactivation buffer. The interactions between enzyme loading and inactivating buffer on the effects of the chemical modifications suggest that the modification and inactivation studies must be performed under the target biocatalysts and conditions.


Assuntos
Candida , Enzimas Imobilizadas , Glutaral , Enzimas Imobilizadas/química , Sefarose/química , Aminação , Proteínas Fúngicas/química , Lipase/química , Estabilidade Enzimática
19.
Protein Sci ; 32(9): e4734, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37483125

RESUMO

Unlike laccases sensu stricto, which are usually monomeric enzymes, laccase-like enzymes recently re-classified as Novel Laccases (NLACs) are characterized by the formation of heterodimers with small proteins (subunits) of unknown function. Here the NLAC from Pleurotus eryngii (PeNL) and a small protein selected from the fungal genome, that is homologous to reported POXA3 from Pleurotus ostreatus, were produced in Aspergillus oryzae separately or together. The two proteins interacted regardless of whether the small subunit was co-expressed or exogenously added to the enzyme. The stability and catalytic activity of PeNL was significantly enhanced in the presence of the small subunit. Size exclusion chromatography-multi angle light scattering (SEC-MALS) analysis confirmed that the complex PeNL-ss is a heterodimer of 77.4 kDa. The crystallographic structure of the small protein expressed in Escherichia coli was solved at 1.6 Å resolution. This is the first structure elucidated of a small subunit of a NLAC. The helix bundle structure of the small subunit accommodates well with the enzyme model structure, including interactions with specific regions of NLACs and some amino acid residues of the substrate-binding loops.


Assuntos
Proteínas Fúngicas , Lacase , Lacase/química , Lacase/genética , Pleurotus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética
20.
Int J Biol Macromol ; 248: 125894, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479200

RESUMO

Ionic liquids (ILs) have been widely used as chemical modifiers to modify the carriers and thus improve the efficiency, activity and stability of the enzymes. However, as thousands of ILs have been found up to date, it's a huge work for screening and designing suitable ILs for immobilization of enzymes. Moreover, the mechanism of improving enzymes catalytic performance is still remain ambiguous. Thus, this study investigated the impact of ILs with different chain lengths on the enzymatic properties of Candida antarctica lipase B (CALB). Molecular dynamics simulations were employed to examine the interaction between ILs modified CNTs and CALB, as well as their effects on CALB's structure. The results revealed that ILs with different chain lengths significantly influenced the absorption orientation of CALB. Tunnel analysis identified a key role for Leu278 in regulating the open or closed state of Tunnel 2 during CALB's catalytic cycle. The weak interaction analysis demonstrated that ILs with suitable chain lengths provided spatial freedom and formed strong interactions with CNTs and ILs (vdW and hbond). This led to a conformational flip of Leu278, stabilizing the open state of Tunnel 2 and improving the activity and stability of immobilized CALB. This study provides novel insights into the design of new green modifiers to modulate carrier performance and obtain immobilized enzymes with better performance, and establishes a theoretical basis for the design and selection of modifiers for ILs in future work.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Leucina , Lipase/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...